Rapid Prediction of Moisture Content in Intact Green Coffee Beans Using Near Infrared Spectroscopy
نویسندگان
چکیده
Moisture content (MC) is one of the most important quality parameters of green coffee beans. Therefore, its fast and reliable measurement is necessary. This study evaluated the feasibility of near infrared (NIR) spectroscopy and chemometrics for rapid and non-destructive prediction of MC in intact green coffee beans of both Coffeaarabica (Arabica) and Coffeacanephora (Robusta) species. Diffuse reflectance (log 1/R) spectra of intact beans were acquired using a bench top Fourier transform NIR instrument. MC was determined gravimetrically according to The International Organization for Standardization (ISO) 6673. Samples were split into subsets for calibration (n = 64) and independent validation (n = 44). A three-component partial least squares regression (PLSR) model using raw NIR spectra yielded a root mean square error of prediction (RMSEP) of 0.80% MC; a four component PLSR model using scatter corrected spectra yielded a RMSEP of 0.57% MC. A simplified PLS model using seven selected wavelengths (1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm) yielded a similar accuracy (RMSEP: 0.77% MC) which opens the possibility of creating cheaper NIR instruments. In conclusion, NIR diffuse reflectance spectroscopy appears to be suitable for rapid and reliable MC prediction in intact green coffee; no separate model for Arabica and Robusta species is needed.
منابع مشابه
Development of new analytical methods for the determination of caffeine content in aqueous solution of green coffee beans
BACKGROUND This study was conducted to develop fast and cost effective methods for the determination of caffeine in green coffee beans. In the present work direct determination of caffeine in aqueous solution of green coffee bean was performed using FT-IR-ATR and fluorescence spectrophotometry. Caffeine was also directly determined in dimethylformamide solution using NIR spectroscopy with univa...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملA Comparative Study Concerning Linear and Nonlinear Models to Determine Sugar Content in Sugar Beet by Near Infrared Spectroscopy (NIR)
This paper reports on the use of Artificial Neural Networks (ANN) and Partial Least Squareregression (PLS) combined with NIR spectroscopy (900-1700 nm) to design calibration models for thedetermination of sugar content in sugar beet. In this study a total of 80 samples were used as the calibration set,whereas 40 samples were used for prediction. Three pre-processing methods, including Multiplic...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملPrediction of fat quality in pig carcasses by near-infrared spectroscopy.
This study was conducted to evaluate the potential of near-infrared (NIR) spectroscopy (NIRS) technology for prediction of the chemical composition (moisture content and fatty acid composition) of fat from fast-growing, lean slaughter pig samples coming from breeding programmes. NIRS method I: a total of 77 samples of intact subcutaneous fat from pigs were analysed with the FOSS FoodScan NIR sp...
متن کامل